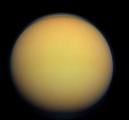

15th International Planetary Probe Workshop June 13th, 2018 Boulder, Colorado



Pneumatic Sample Transport for Ocean Worlds

Nick Traeden

Mechanical Engineer

Presenter:

Joey Sparta

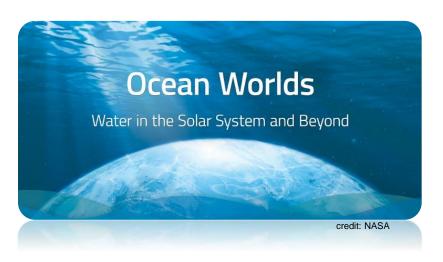
Mechanical Engineer

Honeybee Robotics (HBR)

<u>isparta@honeybeerobotics.com</u>

Kris Zacny	HBR	ColdTech PI
Ralph Lorenz	APL	ColdTech Co-I
Fredrik Rehnmark	HBR	Sr. Systems Engineer
Tighe Costa	HBR	Pneumatic Subsystem Lead
Zach Mank	HBR	Sample Delivery Subsystem
Jameil Bailey	HBR	Avionics Lead

HBR


ery Subsystem Lead

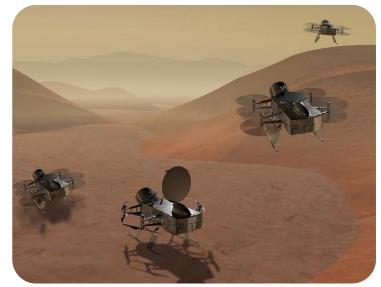
Background

COLDTech - Concepts for Ocean worlds Life Detection TECHnology

NASA-funded ocean worlds technology development program:

- a) science instruments
- b) sample acquisition & delivery systems
- c) spacecraft technology for ocean access

Dragonfly Mission



- New Frontiers IV mission finalist
 - I-year phase A study
- Titan rotorcraft lander with drills & pneumatic sampling system

credit: Johns Hopkins Applied Physics Lab

Ocean Worlds Sampling Challenges

Ocean Worlds ...

SEARCH FOR LIFE

LOW GRAVITY (< 0.15 g)

CRYOGENIC TEMPERATURES

WET/COHESIVE MATERIAL POSSIBLE

Key Sampling Strategies

- Minimize heat transfer into sample
 - Keep sample system cold
 - Sample quickly
- Minimize surface contact between sample and spacecraft

Mechanical vs Pneumatic Transport

Mechanical Transport

- Robotic arm & manipulator
 - Scoops (Phoenix, MSL)
- Screw / Auger (Resource Prospector)
- Brush (Resource Prospector)
- Vibrating mechanisms (MSL)
- Gravity drop
- Belts, buckets, trays

Energy efficient

Complex / multiple moving parts

Issues with cryogenic temperatures

credit: JPL / Caltech

Pneumatic Transport

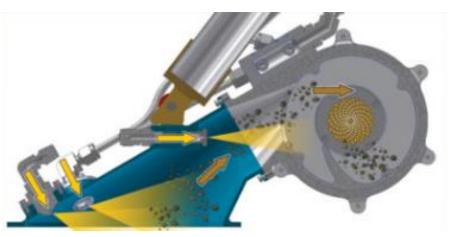
- Uses gas flow to transport materials
 - o E.g. Vacuum cleaners
- Pipeline + pressure source
- Pressure sources fan or gas tank
- Negative pressure (Venus Vega & Venera)
- Positive pressure (PlanetVac)

Extremely fast transport (reduced heat transfer)

Mostly passive system

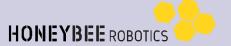
Requires a supply of gas

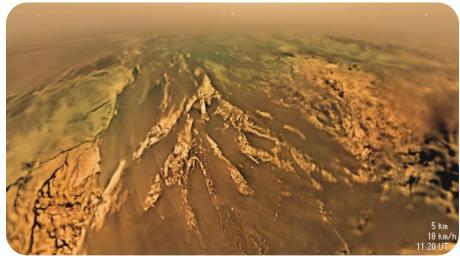
Pneumatic Transport


Atmospheric ocean worlds (Titan)

- Can use local air as carrier gas (using a fan / pump)
- Negative pressure: pulls sample down pipeline
- Positive pressure: pushes sample down pipeline

Airless ocean worlds (Europa, Enceladus, Ganymede, Callisto)


- Must bring your own carrier gas
- Must provide manifold to seal against the surface
- PlanetVac Honeybee Robotics & The Planetary Society



Titan Environment

- Surface:
 - Cryogenic (94 K, -180 C)
 - o 1.5 bar
 - o Air: 95% Nitrogen, 5% Methane, < 0.1% other
- Sand dunes (up to 150 m high)
- Methane rivers and lakes
- Ammonia-rich subsurface ocean?
 - Estimated 10% NH₃ by mass
- Cryovolcanoes Ammonia-water "lava"

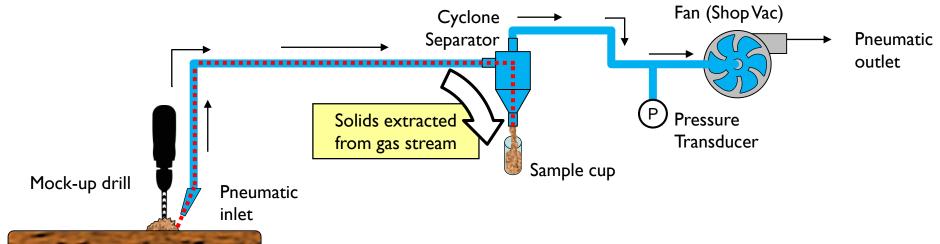
(credit: ESA/NASA/JPL/University of Arizona)

View of Titan surface from Huygens Probe, 2005:

(credit: ESA/NASA/JPL/University of Arizona)

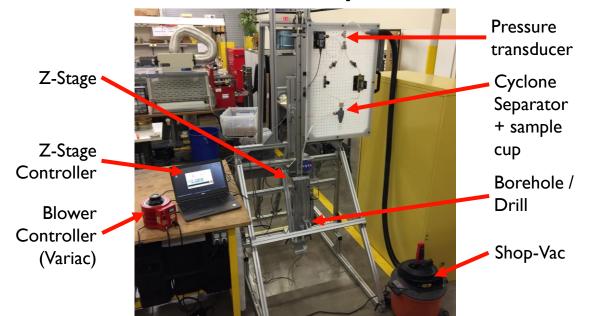
Pneumatics on Titan

• Titan's dense atmosphere and low gravity make it much easier to fly AND to convey pneumatically!


		Earth	Titan	Titan- Earth ratio
Air Density	ρ	1.2 kg/m^3	5.4 kg/m^3	4.4
Viscosity	μ	1.8 x 10 ⁻⁵ Pa-s	6.0 x 10 ⁻⁵ Pa-s	0.33
Gravity	\boldsymbol{g}	9.8 m/s^2	1.4 m/s^2	0.14

		Equation	Velocity
Equivalent Dynamic Pressure	q	$\frac{1}{2}\rho u^2$	$u_{Titan} = \frac{1}{2} u_{Earth}$
Equivalent Particle Terminal Velocity	u_T	$\sqrt{\frac{4d_pg(\rho_p-\rho_{air})}{3\rho_fC_D}}$	$u_{Titan} = \frac{1}{5} \ u_{Earth}$

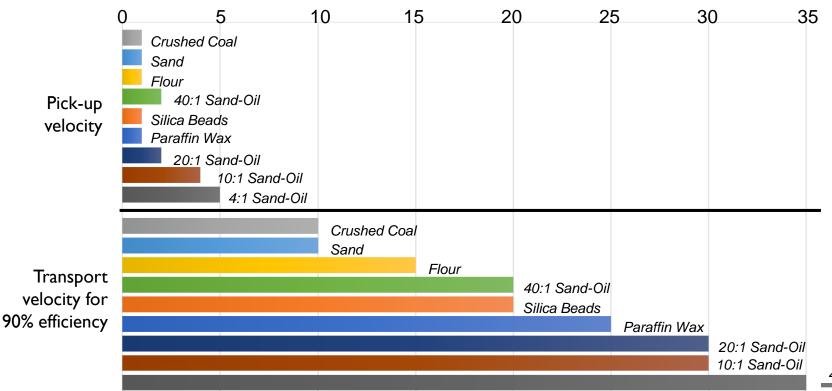
Room Temperature Testing



Planetary surface

Pneumatic Testbed at Honeybee Robotics:

Pneumatic Transport Velocity



Non-sticky Simulants:

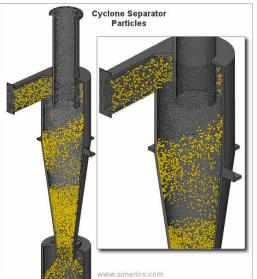
Silica sand (250-500 um)
Silica beads (40-80 um)
Coal (0-1700 um)
Ground walnut shells

Sticky Simulants:

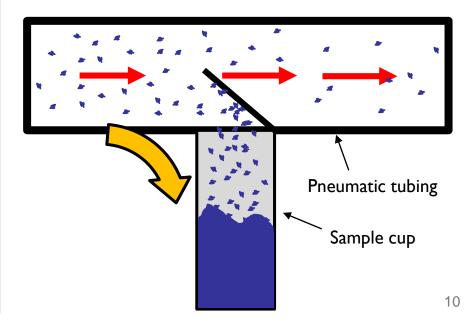
Velocity [m/s]

4:1 Sand-Oil

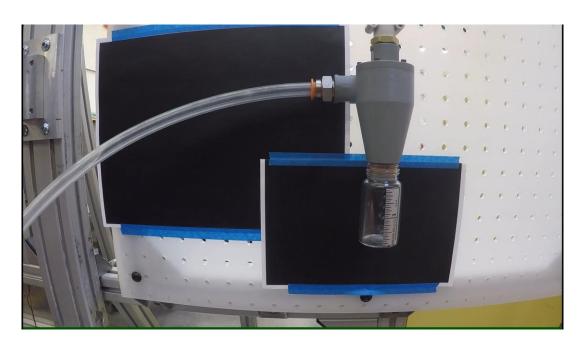
Solid Particle Extraction



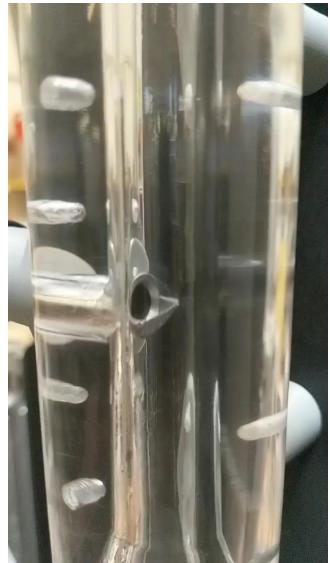
Cyclone Separator


- Creates gas vortex or "cyclone"
- Centrifuge-like separation
- Delivery into cup by gravity
- Widely used in industrial conveying
- Demonstrated in lunar gravity (parabolic flights)

Deflector Cup


- Intercepts particulates with mesh screen
- Deflect into cup outside airstream
- Highly inefficient
- Gravity independent
- Clean / minimal cross-talk between samples

Solid Particle Extraction



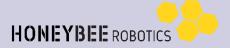
Pathological Testing

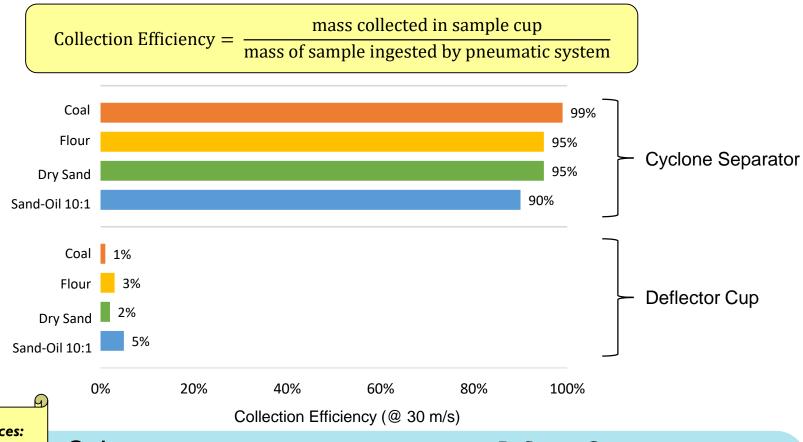
Most materials are transported easily, **however** tests with sand-oil helped to identify challenges of transporting sticky materials

Saturated sand-oil mixture

Sticking inside cyclone:

Sticking to tubing walls:

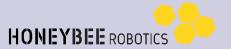



Lessons learned:

- Do not arrest sample until reaching final destination (i.e. keep it airborne)
- Minimize all disruptions in the pipeline sharp bends, blockages, etc...
- Flexible tubing instead of rigid tubing
- More air velocity = cleaner transport

Cyclone & Deflector Cup

Key Differences:


Cyclone

- Uncollected mass is stuck inside system
- Very efficient (> 90%)
- More efficient with dry materials
- Bulk collection
- Surface analysis recommended

Deflector Cup

- Uncollected mass is expelled via fan exhaust
- Very inefficient (< 5%)
- More efficient with sticky materials
- Less prone to cross-talk between sample attempts
- Finite collection (typically small quantities of sample)

- Honeybee is developing a pneumatic sampling system for Titan exploration
 - Could be adapted for operation on other ocean worlds (e.g. Planet-Vac)
- Two types of particle extractors tested to determine strengths and weaknesses
 - Room temperature analog testing to identify and characterize performance with different simulants

