

1

Development and Testing of a Sample Cup for Laser-Based Instruments

Session 104: Astrobiological Technologies I 2019 Astrobiology Science Conference June 24, 2019

Presenter:

J. Tighe Costa Exploration Technologies Group Honeybee Robotics jtcosta@honeybeerobotics.com

Co-Authors:

Andrej Grubisic¹, Joseph Sparta², Xiang Li¹, Marco Castillo¹, Vincent Holmes¹, Cuyler Crandall²,Bernice Yen², Fredrik Rehnmark², Melissa Trainer¹, Ralph Lorenz³, Kris Zacny²

¹NASA Goddard Space Flight Center
 ²Honeybee Robotics Exploration Technologies Group
 ³Johns Hopkins Applied Physics Laboratory

Context

Introduction

Pneumatic system transports sample inside the vehicle Carousel delivers sample to the instruments

Honeybee Robotics Proprietary - Do Not Distribute

Carousel

Sample delivery to two instrument modes: GCMS (18x cups) and LDMS (40x cups)

LDMS Sample Cups

Sample cups perform two functions: collection and presentation

Methods of Collection

Cyclone

Particles collected from dirtyflow vortex by hitting walls

Tea-Strainer

Particles collected from dirty flow by building up in filter

Deflector Cup

Particles collected from dirty flow by deflecting out of flow

Why Choose a Deflector Cup?

Cross- Contamination	Excess sample passes through system	De	
	Readily scalable for single-use sample cups	Particles flow by	
Self-Metering	Yes (cannot over fill sample cups)		
Sample Bias	Collected particle size depends on mesh		
	No preference for cohesiveness	•	
	Bias towards collecting first particles	•	
Collection Efficiency	Inefficient (<5%)		
System Impact	Dirty blower or positive pressure system	•	
	Finite/moderate sample quantities		
	Does not preserve stratification of sample	• •	
	Gravity agnostic collection		
	Sample Clean Flow	Dirty Flow	

Deflector Cup

Particles collected from dirty flow by deflecting out of flow

Collection in Action

Testing in a Relevant Environment

Testing in a Relevant Environment

Successful collection of water-ice, ammonia-ice, paraffin wax, and silica sand

Testing at Earth STP

HONEYBEE ROBOTICS

469uL (94%) Average Fill 54uL (11%) Std. Dev.

Simulants selected cover wide range of material properties:

- Particle density
- Particle size
- Particle shape
- Cohesiveness/stickiness

17cc Ingested 523uL Collected

Walnut Shells 150-175um 833

17cc Ingested 438uL Collected

833-1000um

17cc Ingested 470uL Collected

Glass Beads 40-80um

17cc Ingested 367uL Collected

17cc Ingested 440uL Collected

Wheat Flour <100um

17cc Ingested 417uL Collected

Beach Sand 707-833um

17cc Ingested 523uL Collected

Paraffin Wax <1000um

17cc Ingested 523uL Collected

10:1 Sand:Oil 250-500um

22cc Ingested 523uL Collected

Depth-to-Fill Testing in Limestone

Sample Presentation Requirements

LDMS requires surface of sample to be flat and in laser line-of-sight, and to be able to perform analysis at multiple locations

Sample Presentation in Lab

Analysis Window

Window Sensitivity Results

Sample Delivery

Sample Analysis

Conclusion

Dragonfly's LDMS sample cup design combines two different functions

Collection Deflector Cup Architecture

- ✓ Material Agnostic
- ✓ Gravity Agnostic
 - ✓ Self-Metering
 - ✓ Clean

Presentation

Laser-Window + Repositionable Seal

 ✓ Demonstrated LDMS Compatibility

While developed for Dragonfly...

Sample collection and presentation methods demonstrated to be robust and viable architecture solutions for many sampling applications

Questions?

Appendix

	Cyclone	Tea-Strainer	Deflector Cup	
Operational Mechanism	 Solids in vortex flow hit walls and slow down 	 Mesh catches solids suspended in flow 	 Solids deflected out of flow and into sample cup 	
Cross- Contamination	 Uncollected sample builds up in cyclone 	 Uncollected sample passes through system 		
	Too large for single-use sample cups	Scalable for single-use sample cups		
Self-Metering	No (bulk collection)	Yes (clogged filter)	Yes (full sample cup)	
Sample Bias	Larger particles	Depends on mesh		
	Dry sample	Sticky sample	No preference	
	All particles	• First	particles	
Collection Efficiency	Efficient (>90%)	Inefficient (<5%)		
System Impact	Clean blower	Dirty blower		
	"Unlimited" collection	Small sample quantities only		

Cyclone Testing

Tea-Strainer Testing

Deflector Cup Testing

