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Surface Sampling on Planetary 
Exploration Missions
• Planetary surface exploration missions that seek to collect soil samples 

for in-situ analysis require a sampling system.
• The sampling system performs two primary functions:

– Collect sample from the surface (e.g., drilling, scooping, brushing, etc.)
– Transport sample to a remote instrument located inside a pressure vessel 

or heated interior aboard a lander or rover
• Operating on the same principle as the common household vacuum 

cleaner, a pneumatic sampling system may use airflow to pickup, 
transport and deliver solid particles.
– On worlds with a dense atmosphere (e.g., Venus and Titan), pneumatic 

transport can leverage the natural environment.
– On worlds with very thin or no atmosphere (e.g., the Moon, Europa, Ceres) 

compressed gas can be used to achieve similar results.
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Mechanical vs. Pneumatic 
Transport
• Mechanical collection and transport methods are often 

power (and therefore rate) constrained and rely on gravity 
and are, therefore, not well-suited to adhesive/cohesive 
natural materials that tend to clump together and stick to 
exposed surfaces.

– An example is ice on Mars, which stuck to the inside of the Icy 
Soils Acquisition Device (ISAD) scoop, presumably because it 
had time to melt and refreeze, and could not simply be dumped 
back out.

• For missions that can supply a short burst of pneumatic 
suction, either stored as delta-P or generated by a blower, 
solid particles can be conveyed rapidly and deposited in a 
sample cup without relying on gravity.

– An example is the Soviet Venera and Vega missions to Venus, 
which took advantage of the high ambient pressure at the 
surface to create a sudden blast of air into a vacuum tank 
onboard the lander.
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ISAD scoop on Mars (photo 
courtesy JPL/NASA)

Venera/Vega sampling system 
for Venus (photo courtesy 
mentallandscapes.com)



Benefits of Pneumatic 
Transport
• Gravity agnostic
• Compatible with cohesive (sticky) materials
• Fast transfer minimizes heating and opportunity for contamination
• Flexible architecture (point of acquisition and point of delivery can be 

anywhere on spacecraft)
• Simple mechanical components
• Self-cleaning

4



Design Drivers

• The selection of pneumatic transport method depends on several 
factors including:
– Ambient environment
– Properties of regolith (cohesiveness, particle size, density, etc.)
– Number of samples to be collected (mobility)
– Discrete vs. continuous collection
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Case Studies
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Venus (Atmospheric Drive)

• Surface conditions: 91 atm, 56x earth air density, 0.9 G, 462 °C, competent 
non-cohesive material (basalt)
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Venera-13 Lander (source: NASA History Office)
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Titan (Blower)

• Surface conditions: 1.45 atm, 4.4x earth air density, 0.14 G, 94K, competent 
cohesive material (ice)
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(credit: ESA/NASA/JPL/University of Arizona)
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Europa (Compressed Gas)

• Surface conditions: ~0 atm, 0.134 G, 100K, competent cohesive material (ice)
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(credit: NASA/JPL/University of Arizona)

Compressed gas tank

Planet Vac



Moon (Compressed Gas)

• Surface conditions: 0 atm, 0.17 G, 100K, loose non-cohesive material (dust)
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(credit: NASA)
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Sample Collection (Cohesive vs. Non-Cohesive 
Material)
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Cyclone Separator
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Carousel used to deliver full 
sample cups to instrument



Deflector Cup
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Carousel used to deliver full 
sample cups to instrument



Proof-of-Concept Testing
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Blower Transport of Dry Powder from 
a Drill
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Suction

Mass of 

Sample 

Transported

Flow 

Velocity 

(Ave.)

Pressure 

Drop (Ave.)

Volumetric 

Flow Rate

Type g m/s Pa m3/s

Continuous 25.27 8.6 4137 1.09E-03

Discrete, 

Percussion 

Assisted, 10s 

suction per 

1cm depth

1.61 9.4 5723 1.19E-03

4.24 8.8 5792 1.11E-03

5.12 8.5 5861 1.08E-03

5.67 8.7 5792 1.10E-03

5.68 8.8 5861 1.11E-03
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Blower Transport of Cohesive Loose 
Surface Material
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Pneumatic Testbed at Honeybee Robotics:
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Pneumatic Transport Velocity 
Benchmarks
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Collection Efficiency
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